
PRE-DECISIONAL DRAFT; For planning and discussion purposes only 1
3/16/2020

Mars Science Laboratory

F’ (F Prime)
A Small Scale Reusable Component Framework for Space

Aadil Rizvi

Brian Campuzano

4/19/2017

© 2017 California Institute of Technology.

Government sponsorship acknowledged.



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

2

CALIFORNIA INSTITUTE OF TECHNOLOGY

Special Thanks

Original authors of materials:

Tim Canham – F’ Architect and lead of Mars Helicopter 

Technology Development

Garth Watney – Modeling Advisor and lead of F’ modeling 

task

2



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

3

CALIFORNIA INSTITUTE OF TECHNOLOGY

What software characteristics would you 

favor in a Space Software architecture? 

3



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

4

CALIFORNIA INSTITUTE OF TECHNOLOGY

F' Goals

4

Goal Explanation

Reusability Frameworks and adaptations readily reusable

Modularity Decoupled and easy to reassemble

Testability Components easily isolated for testing

Adaptability Should be adaptable to new contexts and bridge to inherited

Portability Should be portable to new architectures and platforms

Usability Should be easily understood and used by customers

Configurability Facilities in the architecture should be scalable and configurable

Performance Architecture should perform well in resource constrained contexts. Should 

be very compact.



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

5

CALIFORNIA INSTITUTE OF TECHNOLOGY

Terminology

• Commands

• Telemetry

• Events

• Parameters

• Faults

• Sequences

• Health

5



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

6

CALIFORNIA INSTITUTE OF TECHNOLOGY

What is F'?

• F' (F Prime)

– Targeted for instruments, CubeSats and other smaller platforms

– Currently baselined for JPL Leon3 based CubeSat avionics processor

• A component-based architecture as well as a software and testing 

framework to support it

• Designed from the ground up to be compact and reusable

• Includes framework, code generators, build tools, 

Command/Telemetry GUI, and test environment

• Designed to make it easier for developers to concentrate on mission-

specific logic rather than common implementation patterns.

6



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

7

CALIFORNIA INSTITUTE OF TECHNOLOGY

Where is it being used?

• Development

– Developed under software/hardware technology tasks (2013-2016)

– Using established flight software practices and tool checking

• Flew on RapidScat (2014-2016)

– Radar experiment on International Space Station

– No reported software bugs

• Baselined for:

– Leonardo (Mars Helicopter Technology Development)

– Asteria (Cubesat)

– Lunar Flashlight (Cubesat)

– NEAScout (Cubesat)

• Available to anyone at JPL, soon to be open sourced

– Reference example can be run on Linux, MacOS, Cygwin, Raspberry Pi 

and JPL embedded flight hardware platforms.

7



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

8

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': A Reusable Component Architecture

• Consists of components (behaviors) and ports (interconnections for 

data)

• Components are not dependent on other components, so can be 

reused.

• Components to fulfill different requirements (simulation vs. actual) can 

be substituted, even at run time.

• Components can have generic roles (commanding, telemetry, storage) 

which are not dependent on specific applications.

8

1 2

3
1 2

3

1 2

3



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

9

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': A Framework for quick development

• F' provides a C++ framework and 
code generator that encapsulates:

– Thread management

– Inter-Process communication (IPC)

– Commanding 

– Telemetry

– Parameters

• Since these are common patterns, 
developer specifies in simple XML.

– Code generator generates boiler-
plate code.

– Developer concentrates on domain-
specific code.

– Framework invokes user code 
automatically

Component

1
2

3

Port 1 Port 2

9



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

10

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active
• Queued

• Passive

10

Input Port

Output Port

Input Port Handler

(Developer Coded)

Thread



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

11

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active
• Queued

• Passive

11

Input Port

Output Port

Input Port Handler

(Developer Coded)

Thread



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

12

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active
• Queued

• Passive

12

Input Port

Output Port

Input Port Handler

(Developer Coded)

Thread



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

13

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active
• Queued

• Passive

13

Input Port

Output Port

Input Port Handler

(Developer Coded)

Thread



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

14

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active
• Queued

• Passive

14

Input Port

Output Port

Input Port Handler

(Developer Coded)

Thread



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

15

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active
• Queued

• Passive

15

Input Port

Output Port

Input Port Handler

(Developer Coded)

Thread



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

16

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active

• Queued
• Passive

16

Input Port

Output Port

Input Port Handler

(Developer Coded)

Run Port (Synchronous)

Run Port Handler

(Developer Coded)



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

17

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active

• Queued
• Passive

17

Input Port

Output Port

Input Port Handler

(Developer Coded)

Run Port (Synchronous)

Run Port Handler

(Developer Coded)



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

18

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active

• Queued
• Passive

18

Input Port

Output Port

Input Port Handler

(Developer Coded)

Run Port (Synchronous)

Run Port Handler

(Developer Coded)



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

19

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active

• Queued
• Passive

19

Input Port

Output Port

Input Port Handler

(Developer Coded)

Run Port (Synchronous)

Run Port Handler

(Developer Coded)



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

20

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active

• Queued
• Passive

20

Input Port

Output Port

Input Port Handler

(Developer Coded)

Run Port (Synchronous)

Run Port Handler

(Developer Coded)



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

21

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active

• Queued
• Passive

21

Input Port

Output Port

Input Port Handler

(Developer Coded)

Run Port (Synchronous)

Run Port Handler

(Developer Coded)



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

22

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active

• Queued
• Passive

22

Input Port

Output Port

Input Port Handler

(Developer Coded)

Run Port (Synchronous)

Run Port Handler

(Developer Coded)



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

23

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active

• Queued

• Passive

23

Input Port

Output Port

Input Port Handler

(Developer Coded)



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

24

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active

• Queued

• Passive

24

Input Port

Output Port

Input Port Handler

(Developer Coded)



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

25

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Component Types

• Active

• Queued

• Passive

25

Input Port

Output Port

Input Port Handler

(Developer Coded)



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

26

CALIFORNIA INSTITUTE OF TECHNOLOGY

Port Characteristics

• The way incoming port calls are handled is 

specified by the component XML.

• Input ports can have three attributes:

– Synchronous – port calls directly invoke derived 

functions without passing through queue

– Guarded – port calls directly invoke derived 

functions, but only after locking a mutex shared 

by all guarded ports in component

– Asynchronous – port calls are placed in a queue 

and dispatched on thread emptying the queue.

• A passive component can have synchronous 

and guarded ports, but no asynchronous ports 

since there is no queue. Calls execute on the 

thread of the calling component.

• A queued component can have all three port 

types, but it needs at least one synchronous 

or guarded port to unload the queue and at 

least one asynchronous port for the queue to 

make sense. 

• An active component can have all three 

varieties, but needs at least one 

asynchronous port for the queue and thread to 

make sense.

• Designer needs to be aware of how all the 

different call kinds interact (e.g. reentrancy)

• Output ports are invoked by calling generated 

base class functions from the implementation 

class.

26

Code Generated Active Base 

Classfunc1()

virtual func1()=0

Developer Written Implementation Class

func1() {…

func4()

}

Task
Asynchronous

func2()

func2() {…}

Synchronous

func3()

func3() {…}

Guarded

func4()



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

27

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': A Portable Framework

• Code base is in portable, embedded C++

• Has abstraction layer for OS facilities such as:

– Threads

– Synchronization

– Files

– Time

• Data is stored and transmitted in a portable representation

– Allows interaction with ground system no matter the processor architecture

• Has been run on the following processor architectures:

– X86, PPC, ARM, MSP430, Leon3

• Has been run on the following OSes:

– VxWorks, RTEMS, Linux, MacOS, Cygwin, Raspberry Pi Raspbian

– Run on microcontrollers with no OS

• Very compact

– Framework classes ~40K compiled

27



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

28

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': Layered Architecture

28

Utilities

Drivers

Services

Apps

OS



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

29

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': A Framework for testing

• F' components are decoupled from 

others, so unit testing is easier

• F' code generator generates 

counterpart test component that can 

be connected.

• Test component “knows” the 

interfaces, commands, and telemetry

• Tester can invoke generated C++ 

functions to exercise component 

interfaces, commands.

• Telemetry automatically decoded and 

stored for checking in test 

component.

Component

1
2

3

Port 1 Port 2

29

Test Component



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

30

CALIFORNIA INSTITUTE OF TECHNOLOGY

F': A Flight-ready Framework

• C&DH components have been taken through flight software practices

– Design, coding and testing reviews with static analyzer tools and code 

coverage

• Design and code reviewed by peers

• Code scrubbed by JPL institutional analyzer tools

• 100% coverage except certain assertions (default switch, etc)

• Delivered with repeatable automated unit tests

– Includes:

• Rate Groups

• Command handling

• Telemetry Processing

• Parameter storage

• Event handling

• Sequencing

• File Uplink/Downlink

• Health Monitoring

• Fault Protection

• Thermal Control
30



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

31

CALIFORNIA INSTITUTE OF TECHNOLOGY

Both Ends of the Scale

31

TI MSP430

• 24K RAM

• 64K Flash

Rack Mount PC

• Quad-core Xeon

• 8GB RAM

• Hard disk



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

32

CALIFORNIA INSTITUTE OF TECHNOLOGY

Our Projects

32

ASTERIA

• 6U Cubesat

• Exoplanet imager

• Technology Demonstration



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

33

CALIFORNIA INSTITUTE OF TECHNOLOGY

Our Projects

33

NEA Scout

• 6U Cubesat

• Asteroid Flyby

• Solar Sail



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

34

CALIFORNIA INSTITUTE OF TECHNOLOGY

Our Projects

34

Lunar Flashlight

• 6U Cubesat

• Search Lunar craters for

water ice using lasers



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

JET PROPULSION LABORATORY

35

CALIFORNIA INSTITUTE OF TECHNOLOGY

Our Projects

Mars Helicopter 

Technology Development

• Scout for Mars Rover

• Autonomous 2-3 minute

daily flights


